
Information Sciences 280 (2014) 218–238
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Web services composition: A decade’s overview
http://dx.doi.org/10.1016/j.ins.2014.04.054
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding authors.
E-mail addresses: qsheng@cs.adelaide.edu.au (Q.Z. Sheng), qxq@otcaix.iscas.ac.cn (X. Qiao), vasilako@ath.forthnet.gr (A.V. Vasilakos), claudi

adelaide.edu.au (C. Szabo), scott.bourne@adelaide.edu.au (S. Bourne), xiaofei@hit.edu.cn (X. Xu).
Quan Z. Sheng a,⇑, Xiaoqiang Qiao b,*, Athanasios V. Vasilakos c, Claudia Szabo a,
Scott Bourne a, Xiaofei Xu d

a School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
b Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
c Department of Electrical and Computer Engineering, National Technical University of Athens, Greece
d School of Computer Science and Technology, Harbin Institute of Technology, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 July 2013
Received in revised form 9 February 2014
Accepted 10 April 2014
Available online 20 May 2014

Keywords:
Web services composition
Composition life cycle
Composition requirement
Service composition challenge
Service-oriented computing (SOC) represents a paradigm for building distributed comput-
ing applications over the Internet. In the past decade, Web services composition has been
an active area of research and development endeavors for application integration and
interoperation. Although Web services composition has been heavily investigated, several
issues related to dependability, ubiquity, personalization, among others, still need to be
addressed, especially giving the recent rise of several new computing paradigms such as
Cloud computing, social computing, and Web of Things. This article overviews the life cycle
of Web services composition and surveys the main standards, research prototypes, and
platforms. These standards, research prototypes, and platforms are assessed using a set
of assessment criteria identified in the article. The paper also outlines several research
opportunities and challenges for Web services composition.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Since the late 1990s, service-oriented computing (SOC) has emerged as an important computing paradigm and changed
the way software applications are designed, delivered and consumed. In SOC, services are used as fundamental elements to
support rapid, low-cost development of distributed applications in heterogeneous environments [13,60,90]. SOC relies on
service-oriented architecture (SOA) to organize software applications and infrastructures into a set of interacting services.
SOA establishes an architectural model that allows services to be published, discovered, and consumed by applications or
other services, the goal of which is to realize loosely coupled, standard-based and platform-independent distributed comput-
ing [60].

Web services technology is the most promising choice to implement service oriented architecture and its strategic objec-
tives. A Web service is essentially a semantically well-defined abstraction of a set of computational or physical activities
involving a number of resources, intended to fulfill a customer need or a business requirement. A Web service could be
described, advertised and discovered using standard-based languages, and interacted through Internet-based protocols.
Today, two types of Web services are most popular and widely used: SOAP-based Web services and RESTful Web services
a.szabo@

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.04.054&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.04.054
mailto:qsheng@cs.adelaide.edu.au
mailto:qxq@otcaix.iscas.ac.cn
mailto:vasilako@ath.forthnet.gr
mailto:claudia.szabo@adelaide.edu.au
mailto:claudia.szabo@adelaide.edu.au
mailto:scott.bourne@adelaide.edu.au
mailto:xiaofei@hit.edu.cn
http://dx.doi.org/10.1016/j.ins.2014.04.054
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238 219
[62]. The former is based on Web Services Description Language (WSDL)1 and Simple Object Access Protocol (SOAP),2 while
the latter conforms to the REST architectural principles [24].

With the technology of Web services, enterprises are able to expose their internal business processes as services and
make them accessible via the Internet. Nowadays, companies such as Google, Amazon, Twitter, and Facebook have offered
Web services to provide simple access to some of their resources, enabling third-parties to combine and reuse their services.
According to several Web services publication websites, such as ProgrammableWeb,3 WebServiceList,4 and WSIndex,5

Web services have experienced an exponential increase in popularity and usage in the past few years. According to a recent
statistics from seekda.com, there are 28,606 Web services available on the Web, offered by 7739 different providers. Moreover,
the rapid adoption of Cloud computing, social networks, and Web of Things further accelerate the increase of available Web
services on the Internet [12,42,21]. Obviously, Web services will continue to play a central role for modern software
development.

One key challenge for SOA and Web services technology is services composition.6 For service oriented distributed appli-
cations, services are the basic blocks and applications are realized by the interoperations among services. The true capacity of
SOA can only be achieved through composing multiple services into more capable and powerful applications. Web services
composition allows organizations to form alliances, to outsource functionalities, and to provide one-stop shops for their cus-
tomers. From a business perspective, services composition dramatically reduces the cost and risks of building new business
applications in the sense that existing business logics are represented as Web services and could be reused.

Over the last decade, Web services composition has become a thriving area of research and academic efforts, with a sub-
stantial body of research work produced. The aim of this article is to survey these existing major techniques, research pro-
totypes, and standards on Web services composition and identify open research challenges in this area. Several surveys that
focus on Web services composition have been published such as [22,67,83,51,6]. In [22], the authors overview a number of
available Web services composition approaches based on simple classification criteria such as manual vs. automated and sta-
tic vs. dynamic. In [67], the authors discuss Web services composition methods according to the level of automation, and
[83,51,6] focuses on various Web services composition standards. Almost all of these surveys were conducted at the earlier
stage of services composition (before 2007) and recent advancements in this technology were not covered. Additionally,
these surveys overview and analyze services composition technologies only from specific perspectives and lack a holistic
view of Web services composition. The aim of this work is to provide a better understanding of the current research issues
and activities in this area.

In this paper, we first present the life cycle of Web services composition. This life cycle consists of four phases and for each
phase, we identify a set of assessment criteria, which are used as a benchmark to study related research prototypes. 30
research prototypes that cover the most representative efforts in Web services composition in the last decade are compared
using these dimensions. Major Web services composition standards and platforms are also discussed and compared. Based
on our analysis, several future research challenges and possible directions on Web services composition are discussed.

The remainder of the article is organized as follows. In Section 2, we introduce some basic concepts and terminologies
related to Web services composition. In Section 3, we present the life cycle of Web services composition and identify a
set of requirements for each phase. In Section 4, we overview and compare representative standards for Web services com-
position. Then in Section 5, we examine representative research prototypes that support Web services composition and eval-
uate them using the proposed requirements. In Section 6, we also discuss and assess some major Web services composition
platforms. In Section 7, we highlight some future directions for Web services composition research and development. Finally,
we provide some concluding remarks in Section 8.
2. Overview of Web services composition

Web services composition is the process of aggregating multiple services into a single service in order to perform more
complex functions. In this section, we introduce some basic concepts and terminologies related to Web services composition.

2.1. Web services

The term Web service is used very often nowadays, although not always with the same meaning. Existing definitions of
Web services range from the very generic and all-inclusive to the very specific and restrictive. A Web service is often seen as
an application accessible to other applications over the Web. This is a very open definition, under which almost everything
that has a Universal Resource Locator (URL) is a Web service.

A more formal definition provided by IBM is that Web services are ‘‘a new breed of Web application, and they are self-
contained, self-describing, modular applications that can be published, located and invoked across the Web’’. This definition
1 http://www.w3.org/TR/wsdl.
2 http://www.w3.org/TR/SOAP.
3 http://www.programmableweb.com/.
4 http://www.webservicelist.com/.
5 http://www.wsindex.org/.
6 In the rest of this paper, we will use the terms Web services composition and services composition interchangeably.

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/SOAP
http://www.programmableweb.com/
http://www.webservicelist.com/
http://www.wsindex.org/

220 Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238
is more detailed, placing emphasis on the need to be open, which essentially means that a Web service has to be published
and can be located and invoked over the Web.

The W3C7 (World Wide Web Consortium) defines a Web service as ‘‘a software system identified by a Universal Resource
Identifier (URI), whose public interfaces and bindings are defined and described using eXtensible Markup Language (XML). Its
definition can be discovered by other software systems. These systems may then interact with the Web service in a manner
prescribed by its definition, using XML based messages conveyed by Internet protocols’’. The W3C definition stresses that
Web services should be able to be defined, described, and discovered and clearly mentions the requirements of Internet-oriented,
standards-based interfaces. In other words, Web services are components that can be integrated into more complex distributed
applications.

There are generally three roles involved in Web service applications: service provider, service registry, and service requester.
The interactions between these three roles are publish, find and invoke/bind. Web services are implemented and published by
service providers. They are discovered and invoked by service requesters. Information about a Web service (i.e., service
descriptions) is kept within a service registry.

2.1.1. SOAP-based vs. RESTful Web services
There are two main ways for developing Web services: the traditional SOAP-based Web services and conceptually simpler,

RESTful Web services [62].
‘‘SOAP-based’’ Web services, also called WS⁄ Web services, depend on three important standardization initiatives, i.e.,

WSDL, SOAP, and the Universal Description, Discovery, and Integration (UDDI).8 Service registration, discovery and invocation
are implemented by SOAP calls. SOAP-based Web services are protocol independent and stateful, but demand more computa-
tion resources, especially when handling SOAP messages. SOAP-based Web services are typically used to integrate complex
enterprise applications.

By contrast, ‘‘RESTful’’ Web services utilize the REST model. REST stands for Representational State Transfer, which was
introduced as an architectural style for building large-scale distributed hypermedia systems [24]. RESTful Web services are
identified by URIs, which offer a global addressing space for resource and service discovery. RESTful Web services interact
through a uniform interface, which comprises a fixed set of operations in the context of the Web and the Hypertext Transfer
Protocol (HTTP): GET, PUT, DELETE and POST. Services interact by exchanging request and response messages, each of which
includes enough information to describe how to process the message. In contrast to SOAP-based Web services, RESTful Web
services are lightweight and stateless, which are well suited for tactical, ad hoc integration over the Web. A popular tech-
nique is mashup that enables users to create situational applications based on existing application components [57].

2.1.2. Atomic vs. composite Web services
We distinguish between atomic and composite Web services. An atomic service (also called elementary service [72]) is an

access point to an application that does not rely on another Web service to fulfill user requests. Each atomic service provides
a programmatic interface based on SOAP and WSDL. For legacy applications such as those written in CORBA, appropriate
adapters can be developed so that they can be invoked as Web services.

A composite service [7,16,1] is an umbrella structure that brings together other composite and atomic services that col-
laborate to implement a set of operations. The services brought together by a composite service are referred to as its com-
ponent services. An example of a composite service would be a travel preparation service, integrating services for booking
flights, booking hotels, searching for attractions, etc.

Whether atomic or composite, a Web service is specified by an identifier (e.g., URL), a set of attributes, and a set of oper-
ations. The attributes of a service provide information, which is useful for the service’s potential consumers.

2.2. Web services composition

In this subsection, we identify several concepts and issues related to Web services composition. Firstly, we introduce the
concepts of Web service orchestration and choreography. Secondly, we distinguish between static and dynamic composition.
Finally, we discuss automated services composition and manual services composition.

2.2.1. Orchestration vs. choreography
The standard set of Web service technologies (XML, SOAP and WSDL) provides the means to describe, locate, and invoke a

Web service as an entity in its own right. Although a Web service may expose many operations, each WSDL file describes
fairly atomic, low-level functions. What the basic technologies do not give us is the rich behavioral detail that describes
the role the service plays as part of a larger, more complex collaboration [39,75].

There are two ways to describe the sequence of activities that make up a business process: service orchestration and ser-
vice choreography [13,63]. Service orchestration represents a single executable business process that coordinates the inter-
action among the different services, by describing a flow from the perspective and under control of a single endpoint.
7 http://www.w3.org/.
8 http://www.uddi.org.

http://www.w3.org/
http://www.uddi.org

Fig. 1. Service orchestration and service choreography.

Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238 221
Orchestration can therefore be considered as a construct between an automated process and the individual services that
enact the steps in the process. Orchestration includes the management of the transactions between the individual services,
including any necessary error handling, as well as describing the overall process. The standard for Web services orchestration
is WS-BPEL9 (or BPEL in short), which is largely supported by the industry.

Service orchestration always represents control from one party’s perspective (see Fig. 1(a)). This differs from service cho-
reography, which is more collaborative and allows each involved party to describe its part in the interaction (see Fig. 1(b)).
Choreography represents a global description of the observable behavior of each of the services participating in the interac-
tion, which is defined by public exchange of messages, rules of interaction and agreements between two or more business
process endpoints. Choreography is typically associated with the interactions that occur between multiple Web services
rather than a specific business process that a single party executes. The choreography mechanism is supported by the stan-
dard WS-CDL10 (Web Services Choreography Description Language).
2.2.2. Static vs. dynamic composition
Based on the time when Web services are composed, services composition could be categorized into static or dynamic. In a

static composition, the aggregation of services takes place at design time. Service components required for composition are
chosen, bound together, and then deployed. Static Web services composition works well if the business partners involved in
the process are relatively fixed, and service functionalities or composition requirements do not, or rarely, change. Static com-
position is not flexible and adaptable in cases when there are frequent runtime changes of requirements or services that can-
not be predicted at design time. Once an early binding service becomes unavailable, or if there is a better alternative service,
static composition will not be able to provide better support for the execution of composite service in real-time.

In contrast, a dynamic Web services composition allows determining and replacing service components during runtime.
Dynamic Web services composition requires the execution system to support automatic discovery, selection, and binding of
service components. Undoubtedly, dynamic composition is ideal as the Web services environment is highly dynamic in nat-
ure. However, dynamic services composition is a very challenging task and a number of important issues need to be consid-
ered such as composition correctness, time limits, transactional support and so on [31,71].
2.2.3. Manual, semi-automated, and automated composition
Composite services typically involve complex business processes, which may include multiple tasks as well as interac-

tions among these tasks (e.g., control and data flow, transaction dependencies). Ad-hoc development of composite services
is time-consuming, inflexible, cumbersome, and error prone, and is therefore hardly applicable because of the volatility and
size of the Web. Current efforts in Web services composition can be generally grouped into three categories: manual, auto-
mated, and semi-automated [51,71]. By manual composition, a human designer (i.e., service provider) should create an
9 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
10 http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217

222 Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238
abstract composite process, utilizing some Web service standard language, like BPEL or OWL-S. Then, the designer binds the
Web services to the abstract process manually, which is a non-trivial work. This kind of composition is a time-consuming
and error-prone procedure with no guarantee that the execution result will indeed satisfy the user’s requirements.

In contrast, automated services composition is a sort of ‘‘service semantic integration system’’. Automated services com-
position approaches typically exploit the semantic Web [11] and artificial intelligence (AI) planning techniques. By giving a
set of component services and a specified requirement (e.g., user’s request), a composite service specification can be gener-
ated automatically [10]. However, realizing a fully automated services composition is still very difficult and presents several
open issues [9,48]. The basic weakness of most of research efforts proposed so far is that Web services do not share a full
understanding of their semantics, which largely affects the automatic selection of services.

There exist some research efforts that leverage manual and automated compositions. These methods aim to assist the
user at each step of the services composition procedure. For example, in [80,4], the authors propose model-driven
approaches for Web services composition. A completed executable service specification (e.g., BPEL) can be generated from
the composite service specification (e.g., UML activity model, protocol specifications and interface). In [73], composite
services are specified as process schema and the component services are selected at runtime based on the non-functional
properties (e.g., QoS parameters) and constraints specified by the user.

3. Requirements on Web services composition

In this section, we discuss the life cycle of Web services composition, which is divided into four phases. For each phase, a
set of requirements is identified. These requirements will be used as a benchmark to evaluate and analyze existing research
prototypes on Web services composition in Section 5.

3.1. The life cycle of Web services composition

As illustrated in Fig. 2, the life cycle of Web services composition includes four phases: the Definition phase, the Service
Selection phase, the Deployment phase, and the Execution phase.

– Definition phase. During this phase, the service requester specifies the services composition requirement, which should
provide enough information about the user requirements and preferences for the composite service. The requirement
is then decomposed, either semi-automatically or automatically, into an abstract process model (i.e., the abstract compos-
ite service), which specifies a set of activities, the control and data flow among them, the Quality of Service (QoS) require-
ments, and the exceptional behaviors.

– Service selection phase. In this phase, for each activity in the composite service, suitable Web services that match the activ-
ity’s requirements are located by searching the service registry, based on information contained in the published service
description documents. It is likely that more than one candidate service will meet the requirements. Therefore, the best
matched service needs to be selected. After all the required Web services are identified and bound to the corresponding
activities, the constructed composite service is produced.
Fig. 2. The life cycle of Web services composition.

Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238 223
– Deployment phase. In this phase, the constructed composite service is deployed to allow its instantiation and invocation by
end users. The result of this phase is the executable composite service.

– Execution Phase. In this phase, the composite service instance will be created and executed by the execution engine, which
is also responsible for invoking the individual service components. During the execution of the composite service
instance, the monitoring tasks, including logging, execution tracking, performance measuring and exception handling,
should be performed.

It should be noted that for some automated composition methods, such as [46,79], the first two phases are merged where
the constructed composite service is directly generated according to the composition requirements without creating the
abstract composite service.

3.2. Requirements

Considering the highly dynamic and distributed nature of Web service environments, some requirements should be met
in order to achieve successful Web services composition. In this section, we identify several requirements for each phase of
the Web services composition life cycle.

3.2.1. Definition phase

– Expressibility. Expressibility refers to the expressive power of a process modeling language. A highly expressive process
model should have the following six capabilities: (1) modeling the interactions between the composite service and par-
ticipated service components, (2) modeling complex structures such as sequence, choice, concurrency and iteration, (3)
allocating activities to respective roles, (4) representing the data and specify the data flow among activities, (5) specifying
temporal constraints, including startup time, deadline, waiting time, etc., and (6) supporting exception handling and
transactional features.

– Correctness. The design of Web services composition is an error-prone task. Like other distributed systems, it is hard to
guarantee that the composite services will behave as intended. Because runtime errors will lead to unanticipated behav-
iors and cause significant loss, it is important to detect and fix design errors before the actual deployment of composite
services [70]. Correctness refers to the ability to ensure that the composite service conforms to its functional require-
ments. There are two levels of correctness issues. At the first level, it allows verifying whether the behavior of the com-
posite service is correct during execution (e.g., there is no deadlock). At the second level, it allows verifying the composite
service have certain requested properties (safety and liveness properties) [55].

3.2.2. Service selection phase

– Automation. Service discovery is the process of finding suitable service(s) for a given activity, which is the prerequisite of
service selection. Service discovery is usually based on matchmaking between a request query and available Web ser-
vices’ descriptions. Automation support is regarded as the cornerstone to provide effective service discovery in large
and dynamic environments. There are two ways to implement service discovery: syntactic matching and semantic match-
ing. The syntactic matching methods only offer search facilities based on names and identifiers, in which case the match-
making accuracy is low and limited automation support is provided. On the other hand, in semantic based methods, Web
services are supplied with semantic descriptions of many aspects (e.g., operations, inputs, outputs, and even capabilities
and behavior), to increase the level of automation in Web services discovery.

– Selectability. The result of service discovery could be a set of services with similar (or identical) functionality but different
non-functional characteristics. Web services composition systems should have the ability to select the service with the
best QoS among the candidate services. This comprises two fundamental questions: how to describe non-functional attri-
butes and how to select the most appropriate services. The W3C working group defines various QoS attributes for Web
services, which include performance, reliability, scalability, capacity, etc. There are two types of methods in the service
selection literature, namely Optimization-based and Negotiation-based. Optimization-based method assumes a predeter-
mined set of QoS attributes (optimization could be performed at local and global level respectively) [92], while negotia-
tion-based method permits QoS attributes to be flexible [87].

3.2.3. Execution phase

– Adaptability. As mentioned above, Web service environments are highly dynamic where new Web services may come on-
line at any time, existing services could be removed or become temporarily unavailable, and the content and capabilities
(e.g., QoS attributes) of services could be changed. On the one hand, a Web services composition system should support
dynamic service binding or even automatic replacement of selected component services with new services offering better
QoS at runtime. On the other hand, business environments are also highly dynamic where changes may occur rapidly.
Therefore, the services composition system should provide composite services that can dynamically adjust their behav-
iors to meet the changes of customer requirements and to incorporate new business policies.

224 Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238
– Scalability. Composing two Web services is not the same as composing 50 or 100 services. In practice, complex composite
services (e.g., enterprise applications) may involve many Web services, possibly several hundred [51]. Therefore, one crit-
ical issue is how the proposed composition approaches scale with the number of component services. Scalability can be
evaluated from the execution of composite services. There are generally two different kinds of approaches: centralized and
decentralized [7]. In the centralized mode, a single execution engine is responsible for the invocation of composite ser-
vices, including the enforcement of control flows and message exchanges among component services. In the distributed
mode, the component services participating in a composite service interact with each other to ensure that the control and
data flow dependencies expressed in the specification of composite service are respected.

– Monitoring. Runtime monitoring of Web services composition has been widely acknowledged as a significant problem [5].
Once the composite service is executed, its progress needs to be managed and monitored to gain a clear view on how the
composite service and its component services perform within the execution environment. Moreover, properties and
requirements that are verified at design time can be violated at runtime. Web services composition monitoring involves
several distinct activities including: (1) logging and viewing execution details of the composite service and component
service instances, (2) obtaining QoS statistics by analyzing execution data of the composite service and component ser-
vices (e.g., response time, throughput, and availability), and (3) verifying the functional requirements as well as evaluat-
ing the non-functional properties of the composite service.

– Reliability. Reliability refers to the degree of robustness of the services composition system against exceptional behaviors
during the execution of the composite service. Runtime exceptions for the invocation of composite services could be vital
and are not acceptable for many important Web applications – for example, mission-critical applications – and therefore,
should be avoided [71]. Reliability entails handling and recovering from exceptions generated within the composite ser-
vice as well as faults generated by the interactions with other component services. During the execution of a composite
service, the selected service that executes an activity of the composite service may become unavailable because it is over-
loaded or its respective server is unavailable. In addition, the execution of a service might take longer than the estimated
time and might even fail. The main exception recovery techniques in Web services composition include retrying the failed
service, compensating the failed service, and executing an alternative service. Web services composition should also have
transactional support, which guarantees that composite services have consistent outcomes. Traditional ACID (atomicity,
consistency, integrity, and durability) properties are too restrictive for the loosely coupled and distributed services com-
position environment, and usually a compensation mechanism is adopted to achieve transaction management for Web
services composition [40].

3.2.4. Overall requirements
There are some requirements that should be considered during the whole composition procedure, including Tool support

and Personalization, which we elaborate below.

– Personalization. Personalization is an important requirement for providing composite services in highly dynamic and dis-
tributed environments. The pervasiveness of the Internet offers the possibility to interact with services anytime and any-
where. For example, business travelers now expect to be able to access their corporate servers, enterprise portals, e-mail,
and other collaboration services while on the move. Since the requirements and preferences of users are varied, it is
essential that services composition approaches enable a user-centric and context-aware service provisioning [76]. Users
should be able to express contextual preferences and constraints regarding the specification and enactment of services
compositions (e.g., where and when they wish to interact with the services, how to select component services).

– Tool support. Modeling abstract composite services, finding suitable services from a set of candidate services, and manag-
ing and monitoring the execution of the composite service, could be made easier by using appropriate tools. Tool support
is therefore a significant aspect to access the usability of the services composition system.

4. Standardization efforts

Over the years, efforts have been underway to define standards for composing Web services. In this section, we overview
and compare these standardization efforts. Due to the large number of existing standards, we are not going to give an
exhaustive survey, but focus on several representative efforts.

4.1. Overview of services composition standards

– WS-BPEL (Web Services Business Process Execution Language). WS-BPEL, or BPEL in short, is an XML language for Web
services composition. In BPEL, the composition result is called a process, participating services are called partners, and
message exchange or intermediate result transformation is called an activity. BPEL introduces several types of primitive
activities to: (1) allow for interaction with the applications being composed (invoke, reply, and receive), (2) wait for
some time (wait), (3) copy data from one place to another (assign), (4) indicate error conditions (throw), (5) terminate
the entire composition instance (exit), or (6) do nothing (empty).
These primitive activities can be combined into more complex ones using structured activities (also called constructs) pro-
vided by BPEL such as sequence, while, and flow. One particular construct offered by BPEL is scope, which provides a

Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238 225
way to divide a complex business process into hierarchically organized parts. In a scope, there is a collection of activities
that can have their own variables, fault handlers, and compensation handlers. A fault handler gets executed when an excep-
tion arises, for example through the execution of the throw activity, while compensation handlers are triggered due to
faults or through compensate activities that force compensation of a scope. An interesting feature of BPEL is its support for
two distinct styles of process modeling: the graph–oriented style, involving definition of a composition using graph prim-
itives (nodes and edges), and the ‘‘algebraic’’ style derived from process calculi, in which complex control constructs (such
as the compound activities above) result in implicit control flow. Each of these alone provides sufficient expressibility.
Supporting both styles gives the designer maximum flexibility to develop a model in the most intuitive way.

– WS-CDL (Web Services Choreography Description Language). WS-CDL is an XML-based language that describes peer-
to-peer collaborations of participants by defining their observable behavior. WS-CDL captures service interactions from a
global perspective, meaning that all participating services are treated equally, which is different from BPEL where service
interactions are described from one single participant perspective. WS-CDL supports exception handling through a special
kind of workunit, namely Exception, which is associated with a choreography and is enabled when an exception occurs.
Another special kind of workunit is Finalizer, which is enabled when its associated choreography completes success-
fully. A finalizer can confirm, cancel or modify the effects of completed actions of the choreography, which can be used to
provide a compensation mechanism, as well as a range of coordination models.

– BPML (Business Process Modeling Language). BPML11 is an XML-based language that is proposed by the Business Process
Management Initiative (BPMI.org). Initially developed to describe business processes that can be executed by a business pro-
cess management system, the later version of BPML incorporates many concepts of Web Service Choreography Interface
(WSCI),12 which focuses on the choreography of Web services. BPML provides basic and structural activities that are similar
to those in BPEL. The basic activities are used to invoke the available services (action), assign a new value to a message
(assign) and instantiate a process (call). Structured activities are used to manage the branch selection (choice and
switch), repetition (until and while), sequential (sequence) and concurrent activities (all). BPML allows developers
to schedule tasks to determine the time to perform the task by using schedule. Context is an important element in BPML.
A context contains local definitions that specify common behavior for all activities within that context, which can be used to
exchange information and coordinate execution. Signal is used to synchronize between parallel activities executing within
the same context. Designed for long-running business processes, BPML also supports the feature of persistency. Nested pro-
cesses could be established by aggregating several subprocesses. Two transaction mechanisms, atomic and open nested
transactions, are provided in BPML. The former is for short-lived transactions while the latter is for long-running transac-
tions. BPML also provides the exception handling mechanism (exception process) to deal with exceptional events, and the
compensation mechanism (compensation process) to reverse the effects of a completed activity.

– ebXML (Electronic Business Using XML). ebXML13 aims at defining a set of specifications for enabling business-to-busi-
ness (B2B) interactions among companies of any size. ebXML consists of the following major components:
� Messaging service provides a standard way to exchange business messages between organizations. One important fea-

ture of the messaging service is that it does not rely on any particular file transport mechanism (such as SMTP, HTTP,
or FTP) or network for exchanging data.

� Registry is a database of items that support doing business electronically. It stores important information about busi-
nesses such as XML schemas of business documents, definitions of library components for business process modeling,
and trading partner agreements.

� Trading partner information. The Collaboration Protocol Profile (CPP) provides the definition of an XML document that
specifies the details of how an organization is able to conduct business electronically. The Collaboration Protocol
Agreement (CPA) specifies the details of how two organizations have agreed to conduct business electronically.

� Business Process Specification Schema (BPSS) provides the definition of an XML document modeling business processes
(i.e., composite services). It identifies such things as the overall business process, the roles, transactions, identification
of the business documents used (the DTDs or schemas), document flow, legal aspects, security aspects, business level
acknowledgments, and status.

– OWL-S. OWL-S14 previously DAML-S (DARPA Agent Markup Language for Web Services), provides the ability for describing
and reasoning over services semantically. OWL-S consists of three upper ontologies: service profile, process model, and
grounding. The service profile is used to describe services for the purposes of discovery. Service descriptions and queries
are constructed from a description of functional properties (e.g., inputs, outputs, and preconditions) and non-functional
properties (e.g., QoS parameters). In addition, the service profile class can be subclassed and specialized to create profile taxo-
nomies that subsequently describe different classes of services. OWL-S process models describe the composition and execu-
tion of Web services. The process model is used both for reasoning about possible compositions (e.g., validation) and for
controlling the enactment and invocation of a service. OWL-S defines three process classes: composite, simple, and atomic.
Atomic processes are directly invocable and have no subprocesses. Simple processes are not invocable and provide a means
of describing service or process abstractions. A simple process does not have any specific binding to a physical service and
11 http://www.ebpml.org/bpml.htm.
12 http://www.w3.org/TR/wsci.
13 http://www.ebxml.org.
14 http://www.w3.org/Submission/OWL-S.

http://www.ebpml.org/bpml.htm
http://www.w3.org/TR/wsci
http://www.ebxml.org
http://www.w3.org/Submission/OWL-S

226 Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238
thus has to be realized either by an atomic process, or expanded into a composite process. Composite processes are hierar-
chically defined workflows, consisting of atomic, simple and other composite processes. Finally, the grounding of a service
specifies the details of how to access the service. The process model is mapped to a WSDL description of the service, through
a thin grounding. Each atomic process is mapped to a WSDL operation, and the OWL-S properties used to represent inputs
and outputs are grounded in terms of XML data types. Additional properties pertaining to the binding of the service are also
provided (e.g., the IP address of the machine hosting the service, the ports used to expose the service).

– WSMF. The Web Service Modeling Framework (WSMF) [23] is an European initiative to provide a fully fledged modeling
framework for describing various aspects related to Web services. Its main goal is to fully enable e-Commerce by applying
semantic Web technology to Web services. WSMF is centered on two complementary principles: (1) a strong de-coupling
of the various components that realize an e-Commerce application, and (2) a strong mediation service enabling Web ser-
vices to communicate in a scalable manner. WSMF consists of four main elements: ontologies that provide the terminol-
ogy used by other elements; capabilities repositories that define the problems that should be solved by Web services; Web
services descriptions that define various aspects of a Web service; and mediators that bypass interoperability problems.
There are two main projects in WSMF: the semantic Web enabled Web Services (SWWS) and the Web Service Modeling
Ontology (WSMO). SWWS provides a description framework, a discovery framework, and a mediation framework for Web
services, while WSMO service ontology includes definitions for goals, mediators, and Web services.

4.2. Comparison of Web services composition standards

We compare the composition standards described above according to the following requirements:

– Composability indicates the ability to assemble participating services into a composition process and model the interac-
tions between them.

– Role representation indicates the ability to reflect the behavior that a participant has to exhibit in order to interact in the
composition process.

– Complex structure support is the ability to model the complex structures that reflect the execution logic and ordering rules
of actions performed within the composition process.

– Adaptability is the ability to deal with business exceptions and process faults during the execution of the composition
process.

– Compensability represents the ability to reverse the effect of some unsuccessful work in cases where exceptions occur.
– Semantic support is the ability to represent semantics of participating services to facilitate service dynamic discovery and

automated composition.

Table 1 gives a detailed language capacity comparison of BPEL, WS-CDL, BPML, ebXML, OWL-S, and WSMF. From Table 1,
we can see that all languages except WSMF support the modeling of message exchanging and complex structure. Only BPEL
and WS-CDL have the comprehensive expressibility to define interacting roles, complex structures, exception handling and
compensation management. BPML does not support role representation and ebXML does not provide a compensation mech-
anism. We also can observe that only OWL-S and WSMF provide semantic support for services composition.

5. Research prototypes

The past decade has witnessed prosperous research and development activities on Web services composition. Since there
are a huge number of services composition prototypes in the literature, it is impossible for this survey to present an exhaus-
tive overview. Instead, we focus on 30 representative prototypes. These research prototypes are analyzed and compared by
using the requirements identified in Section 3.

5.1. Overview of major research prototypes

As shown in Fig. 3, the selected research prototypes are categorized according to the automation level of the services com-
position modeling.
Table 1
Comparison of Web services composition standards.

Standards WS-BPEL WS-CDL BPML ebXML OWL-S WSMF

Composability + + + + + �
Role representation + + � + � �
Complex structure support + + + + + �
Adaptability + + + + � �
Compensability + + + � � �
Semantic support � � � � + +

(+) Support, (�) No support.

Fig. 3. The classification of selected research prototypes.

Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238 227
5.1.1. Semi-automated services composition

– eFlow. eFlow [16] is one of the first few platforms for specifying, enacting, and monitoring composite services. Composite
services are specified as business processes that combine basic and composite services and are enacted by a service pro-
cess engine. A composite service is modeled by a graph that defines the execution sequence among nodes in the process.
eFlow provides a number of features that support adaptive service provisioning in dynamic environments, including
dynamic service selection, dynamic conversation selection, and generic nodes. eFlow service nodes include the specification
of a service selection rule that is represented in a query language. When a service node is started, the service selection rule
is first executed to dynamically select an appropriate service. Dynamic conversation selection allows eFlow to select a
corresponding conversation for the selected service at runtime, which makes the dynamic service selection practical,
especially when service interfaces are unknown at the design time. Generic service nodes are introduced to support per-
sonalized services composition, which include a configuration parameter that can be set with a list of actual service nodes
either at runtime or at process instantiation time.

– Self-Serv (compoSing wEb accessibLe inFormation and buSiness sERVices). Self-Serv [72] is a framework for dynamic
and peer-to-peer provisioning of composite Web services. In Self-Serv, Web services are declaratively composed and the
composite services are executed in a decentralized way. Self-Serv distinguishes three types of services: elementary ser-
vices, composite services, and service communities. A composite service is specified by statecharts, data conversion rules,
and provider selection policies. A service community is a container of a set of alternative services, and when a community
receives a request, it dynamically selects one of its current members and delegates the request to it. In Self-Serv, a service
is associated with a coordinator which controls and monitors the execution of the corresponding service. Once a service
execution terminates, the control is passed to the next coordinator identified using a routing table. Self-Serv introduces a
service quality model to specify non-functional properties of Web services [91]. The platform supports replanning proce-
dures at runtime to ensure that the QoS of the composite services execution remains optimal.

– WISE (Workflow based Internet SErvices). WISE [35] project aims at providing a software platform for process based
business-to-business electronic commerce. WISE has both a development environment and a runtime component
associate with it. WISE is organized into three service layers: database services, process services, and interface services.
The database service layer acts as the storage manager of all kinds of system data such as templates, instances, history,
and configuration. The process service layer contains all the components required for coordinating and monitoring the
execution of processes. The interface service layer contains interfaces with which users interact the system. Users specify
processes via a process definition tool named StructWare that is based on Petri-nets.

– ServiceGlobe. The ServiceGlobe [30] is a lightweight, distributed, and extensible service platform that aims at providing
new techniques for Web service execution and deployment in dynamic environments. To support the development, exe-
cution, and deployment of flexible and reliable services, ServiceGlobe proposes two approaches: dynamic service selection
and the dispatcher service. Dynamic service selection offers Web services the possibility of selecting and invoking services
at runtime based on a technical specification of the desired service. The dispatcher service addresses load balancing and
high availability of Web services. The dispatcher forwards requests to different service instances and therefore reduces
the risk of a service being unavailable and speeds up request processing because of load sharing. The dispatcher service
implements a feature called automated service replication. Using this feature new services can be installed on idle hosts on
behalf of the dispatcher. ServiceGlobe also implements a context framework that facilitates the development and deploy-
ment of context-aware adaptable Web services.

– WebDG (Web Digital Government). The WebDG project [47] enables semi-automated services composition by dealing
with three major challenges. Firstly, WebDG presents an ontology-based framework for organizing and describing
semantic Web services. Each service community is defined as an instance of an ontology called community ontology.

228 Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238
Then WebDG proposes a composability model to check whether semantic Web services can be combined together, hence
avoiding unexpected failures at runtime. The notions of composability degree and s-composability are introduced to cater
for partial and total composability. Finally, based on the composability model, WebDG provides a set of algorithms that
automatically generate detailed descriptions of composite services from high-level specifications of composition
requests. The composite services are specified using a language called Composite Service Specification Language (CSSL),
which is provided by WebDB. A Quality of Composition (QoC) model is also introduced to assess the quality of the gen-
erated composite services, which can be used to select an optimal composite service in case there exist multiple compo-
sition plans.

– BCDF (Business Collaboration Development Framework). Orriëns et al. [59] presents BCDF, a business rule driven ser-
vices composition framework in which the process of services composition is divided into five phases: abstract definition,
scheduling, construction, and execution. The framework consists of a Service Composition Manager (SCM) and Service
Composition Repository (SCR). SCR facilitates maintaining of composition elements and rules that are used for composi-
tion. SCM consists of Definer, Scheduler, Constructor and Executor, which interact with SCR to assist developing, executing
and managing services composition. When receiving the request from the application developer, SCM passes it on to Defi-
ner to construct the composition structure, add message-exchanging behavior, assign roles and define event-handling
behavior. Then, Scheduler selects the service providers and Constructor generates executable composite service. Finally,
Executor executes the composite service and presents the result. The rules used in the definition and scheduling phases
include structure, data, constraint, resource and exception rules.

– Berardi et al. In Berardi et al. [8], the behaviors of Web services are described by Roman Model in which services export
their behavioral features by using finite transition systems. For verifying the existence of a Web services composition, the
existence of a simulation relation between the target and the component services is checked, which is optimal from the
computational complexity point. Because the maximal simulation contains enough information for extracting every pos-
sible composition through a choice function, this technique could be used to implement services composition that could
deal with events that may occur at run-time. Therefore, the actual services composition could be synthesized in a ‘‘just-
in-time’’ fashion at run-time.

– SOA4All (Service Oriented Architectures for All). SOA4All [36] is a large scale integrating project funded by the European
Seventh Framework Programme, which aims to provide the power, flexibility and simplicity that is necessary for a wider
uptake of service-oriented technologies. SOA, semantic Web, Web of data and context adaptation are adopted as the core
principles of SOA4All. In SOA4All, available Web services, including RESTful services and SOAP-based services, are anno-
tated with semantic information, intending to implement automated service discovery, mediation and composition. Con-
textual information, including local environmental constraints, organizational policies and personal preferences are
considered in services composition. SOA4All uses a mashup-like way to assist end-users to compose Web services.

– METEOR-S (Managing End To End OpeRation for semantic Web). METEOR [52] is a workflow management system,
which focuses on formal modeling, central and distributed scheduling and execution of workflow. After adopting service
oriented architecture and semantic Web services, METEOR evolved into METEOR-S [78], incorporating Data, Functional
and QoS semantics to support the complete life cycle of semantic Web processes. The architecture of METEOR-S is divided
into three main parts: The Specification and Annotation, the Dynamic Configuration and the Process Adaptation. The Spec-
ification and Annotation part adds semantic met-data to WSDL elements by using SAWSDL.15 The Dynamic Configuration
part is in charge of service discovery, constraint analysis, and data mediation. The Process Adaptation part deals with the
problem of adapting the composite services to runtime events and faults.

– TQoS (Transactional QoS-Driven Web Services Composition). El Haddad et al. [28] presents a transactional and QoS-
aware selection method for Web services composition. Service selection is realized based on transactional and QoS
requirements. Transactional requirement is expressed by a risk notion that denotes if the results could be compensated
or not. Quality requirement is described as a set of weights over QoS criteria. In [28], five QoS criteria (execution price,
execution duration, reputation, successful execution rate and availability) are used and a local optimization method
for service selection is proposed. The authors also present and formally analyze a service selection algorithm based on
the workflow patterns and the transactional properties of the component services.

– Discorso (Distributed Information System for Coordinated Service-Oriented Interoperability). Discorso [3] is a frame-
work that aims to provide a comprehensive service-based solution for specifying and managing flexible and adaptive
composite services. Discorso provides a set of tools to support specification of all required information for runtime adap-
tion of the composite services. The service selection method implemented in Discorso is based on mixed-integer linear
programming model, which uses negotiation technique to bargain QoS parameters with service providers when an
end user has severe QoS constraints and thus available solutions cannot be found. Discorso provides mediation support
if the selected service’s interface differs from the interface that the corresponding task definition requires. Discorso also
provides supervision rules to monitor service execution and trigger corrective actions if needed.

– VRESCo (Vienna Runtime Environment for Service-Oriented Computing). Michlmayr et al. [50] present a runtime
environment, namely VRESCo, for Web services composition. The VRESCo Runtime Environment is provided as a server
application, which consists of a Query Engine, a Notification Engine, a Publishing/Metadata Service, a Management Service
15 http://www.w3.org/TR/sawsdl/.

http://www.w3.org/TR/sawsdl/

Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238 229
and a Composition Engine. Dynamic and Asynchronous Invocation of Services (Daios), a client framework for dynamic ser-
vice invocation, is also provided to conduct the message exchange with the involved Web services. Daios supports both
SOAP-based and RESTful services. VRESCo allows QoS based service selection and composition. A QoS Monitor is deployed
as an independent module to measure the availability, performance and accuracy of the target Web services. Service ver-
sioning, dynamic service binding and invocation, as well as service mediation are supported in this system.

– Fujii et al. Fujii et al. [26] implement a semantic-based, context-aware services composition framework which allows
composing applications requested in a natural language. This framework is made up of component service model with
semantics (CosMoS), component runtime environment (CoRE), and semantic graph-based services composition (SeGSeC).
CoSMoS is a component model supporting function, semantic, and context representation of services. CoRE is a middle-
ware that supports CoSMoS on different distributed computing technologies. SeGSeC provides a mechanism to construct a
composite service by synthesizing its process based on the semantics and contexts of component services. SeGSeC imple-
ments context-aware services composition based on specified rules or user preferences obtained through learning.

– SeSCo (Seamless Services Composition). SeSCo [29] provides a services composition mechanism in pervasive environ-
ments. SeSCo utilizes an event-oriented middleware platform, called Pervasive Information Communities Organization
(PICO), to realize service interactions in an efficient manner. The modeling constructs in PICO offer techniques to extract
the capabilities of resources and allow services to be built around the capabilities. The services composition mechanism in
SeSCo models services as directed attributed graphs, maintains a repository of service graphs, and dynamically combines
multiple services into complex services. A hierarchical services composition mechanism based on a device overlay formed
through the latch protocol is also presented, which provides essential service-related support to resource-poor devices.

– MAIS (Multichannel Adaptive Information Systems). The MAIS [43] project aims at creating a platform, a methodology,
and a set of design tools to develop distributed information system based on e-Services. MAIS fulfills QoS-aware dynamic
services composition using contextual information. In MAIS, a service is described by a name, a short description, a service
category, and an aggregation of three types of elements: a Channel (containing contextual information), one or more Ser-
viceProviders and a FunctionalDecription. When requesting a composite service, a user specifies the composition require-
ment and desired QoS constraints, while services are selected based on QoS constraints and their contexts.

– AO4BPEL (Aspect-Oriented for BPEL). Charfi et al. [18] design and implement an aspect-oriented workflow language,
namely AO4BPEL, which extends BPEL to support aspect features and provides a framework to define workflow aspects
for cross-cutting concerns such as logging, auditing, security, and dynamic adaptation of Web services composition at
runtime. By extending the BPEL engine with an aspect runtime component, AO4BPEL can dynamically change the
deployed process through activating or deactivating the defined aspects. In [17], AOBPEL is further extended to support
programmatic activation and deactivation of the adaptation aspects. The extended AO4BPEL is used to implement a plug-
in architecture for self-adaptive Web services composition, including automatic replacement of services, self-adaptation
to policy changes, and service-level agreements (SLAs) monitoring.

– PerCAS (Personalized Context-aware Services). Yu et al. [89] presents a model-driven approach, named PerCAS, to
implement personalized services composition that could adapt to user-specific requirements. The Personalized Con-
text-awareness Logic Model (PCLM), specified by using a rule language, is separated from the base functionality logic
of a composite service. Personalized rules could be dynamically adjusted at runtime. The runtime environment integrates
a BPEL engine and a Drools rule engine to support the execution of such services.

– SCENE (Services Composition ExecutioN Environment). SCENE [19] is part of Service Centric System Engineering (SeCSE)
project, which aims at providing methods, tools and a platform for service engineering. In SCENE, BPEL language is
extended with rules, which enables binding and re-binding self-reconfiguration operations at runtime. The SCENE plat-
form offers an execution environment for composite services described by the SCENE language, in which the BPEL engine
is extended with a set of Proxies to support reconfiguration. A rule engine, Drools, is integrated to execute Event–Condi-
tion-Action (ECA) rules at runtime, and the Binder module is created to execute dynamic binding of candidate services. A
monitoring system is also integrated to provide SCENE with the required monitoring feedbacks.

– VieDAME (Vienna Dynamic Adaptation and Monitoring Execution). Moser et al. [53] propose an execution environ-
ment called VieDAME that focuses on QoS attributes monitoring and dynamic adaptation of BPEL processes. VieDAME
allows replacement of component services based on various service selection strategies, such as availability and response
time. The dynamic adaptation mechanism is implemented with an aspect-oriented approach by intercepting messages
between the composite service and participant services. The VieDAME system is split into the VieDAME core and the Vie-
DAME engine adapters. The VieDAME core is responsible for monitoring, service selection and message transformation (to
compensate service interface mismatches). The engine adapters offer the aspect-oriented interfaces to integrate different
BPEL engines.

– Ngu et al. Mashup is a Web based services composition method, which enables the service consumers to create new
applications just by simple actions. Ngu et al. [57] propose an approach to implement progressive composition of Web
components including portlets, Web applications, native widgets, legacy systems and so on. Semantic annotation for
components and the semantic matching algorithm for searching components are offered. The implementation system
includes a Composite Application Infrastructure (CAI) and an associated Composite Application Editor (CAE). CAI is the
runtime environment for the composite applications, and CAE is utilized to compose application components at develop-
ment time. End-users can drag and drop the components into composition canvas, and connect them by data-flow arcs to
realize a composite application without any low-level programming efforts.

230 Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238
– MashArt. A universal composition approach for UI components as well as data and application logic services is the base of
the MashArt system [20], which aims at enabling end-users to perform complex UI and services composition. The univer-
sal component model is specified by means of the MashArt Description Language (MDL) that consists of four abstractions:
State, Events, Operations, and Properties. Events communicate State changes and other information to the composition envi-
ronment, and Operations are the method invoked and often represent state change. Properties include arbitrary setup
information of the component. The universal composition model is defined using the proposed Universal Composition
Language (UCL), which operates on MDL descriptors only. MashArt uses event-based mechanisms and data flow between
various types of components to allow the construction of complex applications.

5.1.2. Automated composition

– FUSION. FUSION [86] is a framework for service portals. By giving a user service specification, a correct and optimized
service execution plan can be automatically generated and executed, and the results are verified. FUSION contains six
parts: User Specification, Web Services Dynamic Plan Generator, Plan Execution, Verification, Recovery, and User Response Gen-
eration. The user specification part is a graphical form-based interface that allows users to specify their abstract require-
ments. The Web services dynamic plan generator takes input the user specifications and generates correct and optimized
execution plan, in a language called Web Services Execution Specification Language (WSESL). The plan execution part maps
the execution plan into executable code and invokes the method instances described in the plan. The execution part inter-
acts with (1) the verification part to make sure that the service result meets the users satisfied criteria, and (2) the recov-
ery part to initiate an appropriate recovery process in case of the failure of the verification. Finally, the user response
generation part is responsible for preparing and delivering the final response to the user.

– SWORD. SWORD [65] provides a set of tools that allows developers to quickly compose existing Web services to realize
new composite Web services. It is interesting to note that SWORD does not exploit emerging service standards like WSDL
and OWL-S, instead, it uses the Entity-Relationship (ER) model [85] to specify Web services. In SWORD, each service is
modeled by its inputs and outputs, which are specified in a ‘‘world model’’ that consists of entities (e.g., movies) and rela-
tionships among entities (e.g., a theater shows a movie). To create a composite service, a service developer only needs to
specify the initial and final states of the composite service. A rule-based expert system is then used to automatically
determine whether a desired composite service can be realized using existing services.

– McIlraith et al. McIlraith et al. [46] present an approach to address automated Web services composition and its execution
for the semantic Web. The authors adapt and extend GOLOG [37], a logic programming language built on top of the situ-
ation calculus, to enable processes generic, customizable and usable in the context of the Web. Web services are conceived as
primitive actions (information-gathering or world-altering) and complex actions with precondition and effects. Web ser-
vices composition is conceived as a planning problem, and a composite service is a set of component services which are
connected by GOLOG constructs (sequence, choice and so on). Sohrabi et al. [82] extend the method so that GOLOG generic
procedures could be customized not only with ‘‘hard’’ constraints but with ‘‘soft’’ user constraints (user preferences).

– Sirin et al. Sirin et al. [79] adopt Hierarchical Task Network (HTN) planning to address the problem of automated Web
services composition. The authors believe that HTN planning is especially promising for automated services composition,
because the concept of task decomposition in HTN planning is very similar to the concept of composite process decom-
position in the OWL-S process ontology. SHOP2 is a domain-independent HTN planning system [56], which is applied in
this approach to perform the services composition planning. In this approach, OWL-S specification are translated into
HTN planning and submitted to SHOP2 planner to construct the composite service, which is a sequence of Web services
calls that can be subsequently executed. A plan converter is also built to convert SHOP2 plans into OWL-S processes
which can be directly executed by the OWL-S executor.

– McDermott et al. The Planning Domain Definition Language (PDDL) [44], a language for the specification of planning
domains, is a standard input for some planners. In McDermott et al. [45], PDDL is extended to formalize Web services,
and Estimated-regression (a planning technique) planners are applied to implement automated Web services composi-
tion. In this approach, DAML-S (former version of OWL-S) descriptions are translated into PDDL format and thus the
Web services composition problem is seen as a PDDL planning problem.

– ASTRO. In Trainotti et al. [84], a services composition framework, based on the concept of ‘‘Planning as Model Checking’’,
is presented. Given a description of the external protocol (e.g., expressed as an abstract BPEL specification) and compo-
sition requirements (i.e., the business goal, expressed with the EaGLe goal language), the planner synthesizes automati-
cally the composite service that implements the internal process. A monitor of the composite service is also automatically
generated and able to detect whether the component services behave consistently with the specified protocols. Later they
develop the ASTRO toolset, consisting of WS-gen, WS-mon, WS-console and WS-animator, to support automated services
composition, monitoring and execution. WS-gen and WS-mon are responsible for generating the composite service (BPEL
process) and the monitors respectively. WS-animator executes the composite services and WS-console presents the sta-
tus of the monitors associated with each composite service instance.

– OWLS-Xplan. OWLS-Xplan [41] is a composition tool that supports automated and flexible composition of OWL-S spec-
ified services in the semantic Web. In OWLS-Xplan, an artificial intelligence planner called Xplan is applied to generate
the services composition plan, which takes as input the PDDL descriptions of OWL-S services and a planning query,
and returns a plan sequence of component services that satisfies the query goal. Xplan is a hybrid planner which extends

Table 2
Comparison: prototypes vs. services composition requirements.

Prototypes Definition phase Selection phase Execution phase Overall

Expressibility Correctness Automation Selectability Adaptability Scalability Monitoring Reliability Personalization Tool
support

eFlow SFS (�) NA (;) SY (�) NA (;) PA/DB (") CE (�) EL (�) EH/TS (") UP (�) ST (�)
Self-Serv FM (") NA (;) SY (�) LO/GO (") PA/DB (") DE (") EL (�) EH (�) UP/CS (") ST (�)
WISE FM (") CV (") MS (;) NA (;) DB (�) DE (") EL/PA (") EH (�) NA (;) MT (")
ServiceGlobe NA (;) NA (;) SY (�) NA (;) DB (�) NA (;) NA (;) NA (;) CS (�) FT (;)
WebDG SFS (�) NA (;) SE (") LO (�) NA (;) NA (;) NA (;) NA (;) NA (;) ST (�)
BCDF SD (�) NA (;) SY (�) LO (�) NA (;) CE (�) NA (;) EH (�) NA (;) FT (;)
Berardi et al. FM (") CV (") SY (�) NA (;) NA (;) NA (;) NA (;) NA (;) NA (;) FT (;)
SOA4All SL (") NA (;) SE (") GO (") NA (;) CE (�) EL (�) EH/CS (�) UP/CS (") MT (")
METEOR-S SL (") NA (;) SE (") LO (�) PA/DB (") CE (�) EL (�) EH/CS (�) NA (;) ST (�)
TQoS FM (") NA (;) SY (�) LO (�) NA (;) CE (�) NA (;) TS (") UP (�) FT (;)
Discorso SL (") NA (;) SE (") LO/GO (") PA/DB (") CE (�) EL (�) EH/CS (�) UP/CS (") ST (�)
VRESCo SFS (�) NA (;) SY (�) LO (�) DB (�) CE (�) QS (") NA (;) NA (;) MT (")
Fujii et al. SFS (�) NA (;) SE (") NA (;) NA (;) CE (�) NA (;) NA (;) UP/CS (") ST (�)
SeSCo SFS (�) NA (;) SE (") LO (�) DB (�) DE (") NA (;) NA (;) UP/CS (") FT (;)
MAIS FM (") NA (;) SY (�) LO (�) DB (�) DE (") NA (;) NA (;) UP/CS (") FT (;)
AO4BPEL SL (") NA (;) MS (;) NA (;) PA/DB (") CE (�) EL/QS (") EH/CS (�) NA (;) ST (�)
PerCAS SL (") NA (;) MS (;) NA (;) PA/DB (") CE (�) EL (�) EH/CS (�) UP/CS (") ST (�)
SCENE SL (") NA (;) SY (�) LO (�) DB (�) CE (�) EL (�) EH/CS (�) NA (;) ST (�)
VieDAME SL (") NA (;) SY (�) LO (�) DB (�) CE (�) QS (") EH/CS (�) NA (;) MT (")
Ngu et al. NA (;) NA (;) SE (") NA (;) NA (;) CE (�) NA (;) NA (;) NA (;) ST (�)
MashArt SFS (�) NA (;) MS (;) NA (;) NA (;) CE (�) NA (;) NA (;) NA (;) ST (�)
FUSION PL (;) CV (") SY (�) NA (;) NA (;) CE (�) NA (;) EH (�) NA (;) ST (�)
SWORD PL (;) NA (;) SY (�) NA (;) NA (;) CE (�) NA (;) EH (�) NA (;) ST (�)
McIlraith

et al.
PL (;) NA (;) SE (") NA (;) NA (;) CE (�) NA (;) NA (;) UP (�) FT (;)

Sirin et al. PL (;) NA (;) SE (") NA (;) NA (;) CE (�) EL (�) NA (;) UP (�) ST (�)
McDermott

et al.
PL (;) NA (;) SE (") NA (;) NA (;) NA (;) NA (;) NA (;) NA (;) FT (;)

ASTRO SL (") NA (;) SY (�) NA (;) NA (;) CE (�) EL (�) EH/CS (�) NA (;) MT (")
OWLS-Xplan PL (;) NA (;) SE (") NA (;) NA (;) NA (;) NA (;) NA (;) NA (;) FT (;)
Kona et al. SFS (�) CV (") SE (") NA (;) DB (�) NA (;) NA (;) NA (;) NA (;) FT (;)
CSC NA (;) NA (;) SE (") GO (") NA (;) NA (;) NA (;) NA (;) NA (;) FT (;)

Definition phase Selection phase

Expressibility Correctness Automation Usability

SFS Self-defined Flow Structure CV Correctness Verification SY Syntactic Support LO Local Optimization
FM Formal Method NA Not Addressed SE Semantic Support O Global Optimization
SL Standard Language MS Manual Selection NA Not addressed
PL Planning Language
NA Not Addressed

Execution phase

Adaptability Scalability Monitoring Reliability

PA Process Adaptation DE Decentralized Execution EL Execution Logging EH Exception Handling
DB Dynamic Service Binding CE Centralized Execution QS QoS Monitoring TS Transactional Support
NA Not Addressed NA Not Addressed PA Properties Analysis CS Compensation Support

NA Not Addressed NA Not Addressed

Overall Legend: (") High (�) Medium (;) Low

Personalization Tool support
UP User Preferences Support MT Provide Many Tools
CS Context-Aware Support SM Provide Some Tools
NA Not Addressed FT Provide Few Tools

Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238 231
an action based FastForward-planner (graph based planning) with HTN planning and re-planning component. OWLS-
Xplan consists of several modules for preprocessing and planning. The preprocessing module is responsible for creating
the required data structures, generating the initial connectivity graph and goal agenda. The planning module supports the
heuristically relaxed graph-plan generation and enforced hill-climbing search.

– Kona et al. Kona et al. [32] use the Universal Service-Semantics Description Language (USDL) to specify the formal
semantics of services. USDL uses WordNet as a common basis for understanding the meaning of services. A service is rep-
resented by pre-condition, inputs, side-effect, affected object, outputs and post-conditions. Given a repository of available
Web services and a query of the requirements on the request service, a directed acyclic graph of Web services to achieve
the desired service is automatically synthesized and translated into OWL-S specification. The composition flow includes
sequential, non-sequential and conditional structures.

232 Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238
– CSC (Cooperative Service Composition). Mehandjiev et al. [49] propose a cooperative services composition method to
support automated synthesis of composite services. Service providers are proactive in the synthesis of the composite ser-
vices. The service requestor announces the need for a composite service by specifying its start and end states on a spe-
cialist noticeboard. Each service provider agent will bid to contribute a partial solution for the required composite service.
When a full solution is obtained, it is presented to the service requestor agent. All possible solutions are evaluated using
the composition quality metrics, which include semantic quality and non-functional QoS of the solutions.

5.2. Research prototype comparison

The evaluation of Web services composition prototypes covers 30 representative research prototypes. Some are classical
research prototypes (e.g., eFlow, WISE and Self-Serv) that have made fundamental contributions and have influenced the
field of services composition, while the rest are recently emerged, representative research work. In this section, these
research prototypes are compared using the requirements based on the Web services composition life cycle, presented in
Section 3. Table 2 summarizes our results.

For each research prototype, we summarize the main features according to the identified requirements. For example, for
the two requirements of the definition phase, eFlow features a self-defined structure in terms of expressibility and provides no
support for correctness checking (i.e., not addressed). For each requirement, we also provide an indicative assessment using
high, medium, or low. For instance, for Automation in the selection phase, if a prototype supports manual selection of services
(i.e., MS), we give a ranking of low. If it supports semantic-based selection (i.e., ME), we give a ranking of high, and similarly, a
medium for syntactic based service selection (i.e., SY).

From the table we can see that eFlow uses self-defined graph structure to describe the composite service process. The
expressibility of the modeling method is comparatively low and the correctness verification is not supported. eFlow utilizes
selection rules to provide syntactic support for automated service selection. However, non-functional properties are not con-
sidered in service selection. eFlow is adaptable because it supports dynamic modification of composite service processes and
dynamic service binding. eFlow is not scalable because it employs a centralized execution engine. The monitoring mecha-
nism of eFlow is only limited to execution logging of composite services. eFlow supports exception handling and transaction
management and thus the reliability of eFlow is high. eFlow supports personalization in the sense that users can customize
the composite service processes. Finally, some tools are available in eFlow to facilitate the modeling of composite service
processes and the monitoring of running instances.

From the expressibility column in Table 2, we can see that some of the semi-automated composition prototypes (e.g., Self-
Serv, WISE, and MAIS) adopt formal methods, including statecharts, Petri-nets and state machine, to model the composite
service processes. There are about one-third of semi-automated composition prototypes (e.g., SOA4All, METEOR-S, and
AO4BPEL) whose composite services are designed using the BPEL language, the de facto standard for defining Web service
based processes. Other semi-automated composition prototypes (e.g., eFlow, WebDG, VRESCo and MashArt) use self-defined
flow structures as modeling languages. In comparison, the use of formal methods and BPEL allows for more expressive power
in defining complex structures, data flow, temporal constraints, exception handling, transactional features, etc. Most of the
automated composition prototypes (e.g., FUSION, SWORD and OWLS-Xplan) adopt planning languages as their modeling
methods. The expressibility of these planning languages is relatively low and most of the automated composition methods
are limited to sequential composition of atomic services. For the correctness requirement, we note that only a few of the
research prototypes support behavioral analysis for composite services. Among these prototypes, FUSION, the work by Ber-
ardi et al., and the work by Kona et al. provide correctness guarantees, while WISE provides what-if and bottleneck analysis.

For the automation requirement, a few of research prototypes (WISE, AO4BPEL, PerCAS and MashArt) only support manual
selection of the component services. Half of the rest (e.g., eFlow, Self-Serv, and ServiceGlobe) support automated service
selection based on syntactic matchmaking while the other half (e.g., WebDG, SOA4All, and METEOR-S) provide semantic sup-
port for automated service selection. For the selectability requirement, we note that more than half (57%) of the prototypes do
not consider any QoS constraints for service selection. Only Self-Serv, SOA4All, Discorso, and CSC implement QoS driven ser-
vice selection based on global planning, while the other prototypes (e.g., WebDG, METEOR-S, and VRESCo) perform optimal
service selection for each individual task without considering the overall QoS constraints of a composite service.

For the adaptability requirement, a high proportion of research prototypes (53%) do not provide adaptation mechanism at
runtime. 27% of the research prototypes (e.g., WISE, SeSCo, and VieDAME) only support dynamic service binding and the rest
20% (i.e., eFlow, Self-Serv, METEOR-S, Discorso, and AO4BPEL) support both service Process Adaptation and dynamic service
binding. For the scalability requirement, Self-Serv, WISE, SeSCo, and MAIS support decentralized execution mode. These four
prototypes have higher scalability than the rest of the research prototypes (87%) that only provide centralized engine, or do
not provide support for the execution of the composite services. Moreover, we note that the majority of research prototypes
(87%) do not, or only partially, provide support for the monitoring requirement. Only a few research types (i.e., WISE, VRESCo,
AO4BPEL, and VieDAME) provide abilities to implement QoS statistics and functional verification. For the reliability require-
ment, 33% of research types support exceptional handling and transactional management for the composite services, most of
which (e.g., SOA4All, and AO4BPEL) depend on the reliable mechanism (fault handler and compensation handler) of the BPEL
language and only eFlow and TQoS provide specific functions to support transactional properties. 17% of the research pro-
totypes (e.g., Self-Serv, WISE, and FUSION) only support exception handling and the rest 50% (e.g., ServiceGlobe, WebDG, and
ASTRO) do not have any particular mechanism for the reliability requirement.

Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238 233
Finally, it is worth mentioning that more than half of the approaches (60%) neglect the personalization issues of composite
services. Self-Serv, SOA4All, Discorso, MAIS, PerCAS and the work of Fujii et al. support both user preferences and contextual
constraints feature for personalized service provisioning. For the tool support requirement, we note that only WISE, SOA4All,
VRESCo, VieDAME, and ASTRO (17%) provide comprehensive software tools to facilitate process modeling, service discovery,
execution monitoring and management. 47% of the research prototypes (e.g., eFlow, Self-Serv, and WebDG) offer some tools
to implement basic functions (e.g., process modeling). As to the remaining research prototypes (36%), little is presented and
discussed on tool support for services composition.
6. Services composition platforms

Major software vendors (e.g., IBM, Oracle, Microsoft) and open source organizations (e.g., Apache,16 JBoss17) have been
working on implementing services composition platforms in the last decade. In this section, we first present a set of features
required for services composition platforms and then compare several major platforms based on these features. Similarly,
we focus on the major players in this arena. Our study is based on vendor white papers since there are few or no published
technical papers detailing these products. Additionally, these platforms operate at different levels of disclosure.

6.1. Features of services composition platforms

– Open standard support. Open standard support is the basic prerequisite for achieving high interoperability and compati-
bility, with which a services composition platform can choose services provided by third parties to achieve greater
re-usability, and collaborate with partners to achieve better data portability. Information can be exchanged and inter-
changed in a straightforward manner.

– Ease-of-use. Services composition platforms should be easy to use, meaning that necessary tools are required to reduce
the complexity and improve the efficiency of services composition development. For example, the composite service pro-
cess could be modeled more easily using a drag-and-drop editor.

– Simulation. Simulation is a means of creating a virtual composite service in order to evaluate its performance before exe-
cuting it in a real environment. This allows developers to dynamically verify process flows, validate the model and collect
timing and resource information on the composite service with a view to business process improvement.

– Administration and monitoring. The runtime administration, including starting, suspending, resuming and terminating
composite service instances, should be supported by a services composition platform. Monitoring includes tracking the
execution states of instances and analyzing the performance characteristics for process improvement.

– Adaptability. To capture the dynamics of service oriented environment, a services composition platform should be able to
provide adaptability to composite services, such as dynamic service re-binding, process version management, process
definition updating and instance updating. The change of the composite service process requires dynamic updating with-
out suspending or terminating related running instances.

– Optimization. Optimization is an important way to reduce costs and create greater business value. The intent of optimi-
zation is to retrieve process performance information from modeling or monitoring phase, to promote full-capacity use of
services by reducing the potential or actual bottlenecks, to enhance efficiency by arranging the activities in the best order,
and to identify the potential opportunities for cost savings or other improvements.

– Security. It is important to ensure security in Web service applications. The security techniques of services composition
include providing message protection through message integrity, encryption and authentication, and preventing unau-
thorized access of services through access control policies.

6.2. Comparison of services composition platforms

We compare several representative services composition platforms including five commercial platforms IBM Business
Process Manager,18 Oracle BPEL Process Manager,19 Microsoft BizTalk Server,20 SAP NetWeaver Process Integration,21 Active End-
points ActiveVOS,22 and two open source software products Apache Orchestration Director Engine (ODE)23 and JBoss jBPM24 The
comparison result is shown in Table 3.

From Table 3, we note that all services composition platforms adopt BPEL as the services composition language. Some of
the platforms (e.g., IBM Business Process Server, Oracle BPEL Process Manager, and Apache ODE) provide BPEL-based
16 http://www.apache.org/.
17 http://www.jboss.org/.
18 http://www-03.ibm.com/software/products/us/en/business-process-manager-family.
19 http://www.oracle.com/technetwork/middleware/bpel/overview.
20 http://www.microsoft.com/en-us/biztalk/default.aspx.
21 http://help.sap.com/nwpi.
22 http://www.activevos.com.
23 http://ode.apache.org.
24 http://www.jboss.org/jbpm.

http://www.apache.org/
http://www.jboss.org/
http://www-03.ibm.com/software/products/us/en/business-process-manager-family
http://www.oracle.com/technetwork/middleware/bpel/overview
http://www.microsoft.com/en-us/biztalk/default.aspx
http://help.sap.com/nwpi
http://www.activevos.com
http://ode.apache.org
http://www.jboss.org/jbpm

Table 3
Comparison of services composition platforms.

Platforms Open Standard
support

Ease-of-use Simulation Administration and monitoring Adaptability Optimization Security

IBM Business
Process
Manager

WS-BPEL Provide eclipse-based
tools for BPEL design

Support process
simulation and
replay

Support administration of
process state and performance

Provide recovery
facilities; support
authoring and editing
of business rules

Integrate process
optimizer for
bottlenecks
identification and
historical analyses

Support WS-security
for lower-level
integration

Oracle BPEL
Process
Manager

WS-BPEL Provide process designer
for graphical modeling
and service browser

Support transit
simulation

Support deploying, managing,
administration, auditing and
debugging BPEL processes with
BPEL Console

Integrate rules engine
for dynamic decision
making at runtime

Use Business Process
Analysis (BPA) for
optimization

Support security
policies including
password protection
and message
encryption

Microsoft BizTalk
Server

WS-BPEL & XLANG Integrate visual studio for
graphical development

Support Web
services
simulation

Support real-time monitoring by
Business Activity Monitoring
(BAM)

Support business rules
engine

Support performance
monitor and analysis

Support access control
and data security

SAP NetWeaver
Process
Integration

WS-BPEL Provide graphical
modeling tool

No support Support monitor and
administrate individual and end-
to-end processes

Provide rules composer
and rules engine

Support
measurement and
analysis of business
processes

Support data
protection and
communication
security

ActiveVOS WS-BPEL;
BPEL4People; WS-
HumanTask

Provide ActiveVOS
Designer for development,
test and deployment of
processes

Provide business
process model
simulator

Support engine properties
monitoring and abnormalities
handling by ActiveVOS
Monitoring Alert Service

Allow process to
automate changes to
the configuration
documents; support
process instances
migration

Provide performance
dashboard for
identifying resources
and bottlenecks

Support WS-Security

Apache ODE WS-BPEL eclipse BPEL editor No support Support process support for
instance-state administration
and monitoring

No support No support Support WS-Security

JBoss jBPM WS-BPEL; WS-
HumanTask

Provide eclipse-based and
Web- based editor for
graphical creation of
processes

No support Provide management console
supporting process instance
management and task
management; history logging

Support process
instance migration

No support security features are
still in alpha stage

234
Q

.Z.Sheng
et

al./Inform
ation

Sciences
280

(2014)
218–

238

Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238 235
graphical modeling tools, while other platforms adopt graphical models (such as BPMN) and support automated transforma-
tion from those models to BPEL.

For most of the platform providers, the services composition platform is a major part of their Business Process Manage-
ment Suite and human tasks support is an important part of a BPM solution. Therefore, some of the platforms (e.g., ActiveVOS
and jBPM) support WS-HumanTask or BPEL4People, describing how human interaction in BPEL processes can be performed.
In addition, IBM Business Process Server, Oracle BPEL Process Server, and BizTalk Server also provide various mechanisms to
implement human interactions. For example, Human Workflow Services (HWS), a standard part of BizTalk Server, is used for
workflow activities that involve human intervention. The advantage of the commercial software is that they provide a large
set of tools to implement requirements of Process Adaptation, optimization, security, etc. On the other hand, the advantage of
the open source software (Apache and JBoss) is that they are more flexible and open, which makes it easy to add new features.

7. Open issues

Although Web services composition has been extensively studied in the past decade, techniques are still not fully mature
yet with several open issues remaining. Moreover, the rapid rise and adoption of new computing paradigms such as Cloud
computing, social computing, and Web of Things in recent years also presents compounded challenges in this area [12]. In
this section, we identify several directions for future research on services composition.

– Dependable services composition. The components of a composite service are normally distributed and autonomously pro-
vided by different organizations. As indicated from our analysis in Section 5, providing reliable and dependable services
composition still remains a significant challenge [22,94,75]. When composing services, particularly for mission-critical
applications (e.g., health care, stock trading, and air traffic control), service developers should be able to check the sound-
ness and completeness of compositions so that the design problems can be identified and addressed at early stages. This
typically involves modeling, verifying, and checking service behaviors in terms of transaction and conversation support.
In recent years, model checking and verification of fault tolerant Web services compositions has become an active
research topic [80,94,75,25,68,14,39]. We believe more research is needed for developing novel solutions and tool sets
on dependable services composition. Furthermore, Web services composition needs to consider application domains. Dif-
ferent domains may have very different constraints and features, which present significant challenges in dependable ser-
vices composition. Domain knowledge, constraints, preferences, and policies need to be specified and enforced [88].

– Adaptable and autonomous services composition. Nowadays the environment in which composite services are developed
and executed has become more open, dynamic, and ever changing. Accordingly, there is a need for a more adaptable
and flexible approach for services composition. Autonomous services composition is a promising research effort to
increase the adaptability of services composition, which includes several fundamental properties: self-configuring,
self-optimizing, self-healing, and self-adapting [90,17,61,74]. Self-configuring composition means that the composite ser-
vice can discover and select new component services automatically. Self-optimizing composition indicates that compo-
nent services will be chosen according to the constraints of QoS. Self-healing composition can automatically detect the
violations of requirement and react to these violations correctly. Self-adapting compositions means the composite service
could adjust its behavior in case of changes of external services with only a little or none of human intervention. Typically,
Web services are developed independently by different organizations. These services are often incompatible and cannot
interact directly. Service mediation provides an effective way in dealing this challenge and several research efforts have
been devoted on this topic in the last few years [39,54,33,38]. These approaches mostly focus on how to synthesize ser-
vice mediators semi-automatically or automatically in the case when services could be mediated. In practice, interactions
among services might not be fully mediated due to irreconcilable mismatches. This calls for further research on Web ser-
vices mediation.

– Pervasive services composition. The proliferation of ubiquitous, interconnected computing devices (e.g., PDAs, 3G mobile
phones), as well as recent advances in radio-frequency identification (RFID) technology and sensor networks, are fostering
the emergence of environments where Internet applications and services made available to mobile users are a commodity
[76,29,15,66,64,2]. Composing services across multiple mobile devices in such an environment presents new challenges
that do not occur in traditional services composition settings [15]. In particular, composition mechanisms in pervasive
environments need to address context awareness, heterogeneity and contingencies of devices (e.g., unpredictable avail-
ability of services and mobile devices), and personalization (e.g., service provisioning based on user preferences). Since
the devices where services are running are usually resource constraint (e.g., limited memory and battery life), special con-
siderations are necessary for the efficiency and performance of composite services. From our analysis of existing services
composition prototypes (see Section 5), it is clear that relatively few research focuses on services composition in perva-
sive environments. Extensive research efforts are therefore needed in this direction.

– Support of RESTful services and mashups. RESTful services are software services that are published on the Web, emphasiz-
ing the correct and complete use of the HTTP protocol. Due to its lightweight, simplicity, and performance, REST model
has been widely accepted as an alternative to SOAP-based Web services in services provisioning [62,77]. Companies such
as Google, Amazon, Twitter and Facebook are increasingly exposing their services as RESTful Web services. In the emerg-
ing Web of Things, RESTful Web services are the first choice to implement smart things [42,27]. Some initial efforts
towards RESTful services composition have been presented recently [93]. Mashup is another approach to aggregate

236 Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238
multiple services and resources [57]. Challenges of automated RESTful services composition include: (1) an explicit,
machine-readable description format to represent RESTful services such as Microformat [34], (2) a composition language
specific for RESTful services, that can be used to construct a composite RESTful service and effectively deals with the
dynamic, flexible nature of RESTful services, and (3) a state management method, that is able to maintain the state of
the application because RESTful services are stateless.

– Security support of services composition. Services composition technologies promise cheap and effective means for appli-
cation integration over the Internet. Beyond the functional aspects, non-functional composition properties such as secu-
rity and trust are of utmost importance for the adoption of composition technologies [12,69,81]. This is especially the case
when compositions happen in open environments such as cloud [58]. There are several security issues (e.g., confidenti-
ality, integrity, privacy, authentication, and authorization) that must be considered to give users the confidence that their
data are safely handled. Several specifications for Web service security have been proposed such as WS-Security,25 WS-
Trust,26 and WS-Federation.27 However, these specifications have not yet fully found their way to composite Web services.
We believe that intensive research and development are needed to support secure and trustworthy services composition.

8. Conclusion

For more than a decade, Web services composition has been an active area of research and development. A wealth of
exciting activities including standardization, research, and system developments have been conducted. In this article, we
present a comprehensive survey on the state-of-the-art of Web services composition. We abstract a generic model for the
life cycle of Web services composition, which is used to compare different research prototypes based a set of assessment
criteria. We overview and compare 30 representative research prototypes on Web services composition, from pioneering
works conducted at its early stage, to the most recent efforts in this research topic. Additionally, a number of Web services
composition standards and services composition platforms are compared. Along with the current research efforts, we iden-
tify several open research questions that we hope to stimulate further research in this important area.
Acknowledgments

Quan Z. Sheng’s work has been partially supported by Australian Research Council (ARC) Discovery Grants DP0878367
and DP140100104. The authors would like to thank the anonymous reviewers for their valuable feedback on this work.
References

[1] Semantic Web Enabled Composition of Web Services, PhD thesis, Virginia Polytechnic Institute and State University, Falls Church, Virginia, USA, 2004.
[2] Giovanni Acampora, Matteo Gaeta, Vincenzo Loia, Athanasios V. Vasilakos, Interoperable and adaptive fuzzy services for ambient intelligence

applications, ACM Trans. Auton. Adapt. Syst. (TAAS) 5 (2) (2010) 8.
[3] Danilo Ardagna, Luciano Baresi, Sara Comai, Marco Comuzzi, Barbara Pernici, A service-based framework for flexible business processes, IEEE Softw. 28

(2) (2011) 61–67.
[4] Karim Baina, Boualem Benatallah, Fabio Casati, Farouk Toumani, Model-driven Web service development, in: Proceedings of the 16th International

Conference on Advanced Information Systems Engineering (CAiSE’04), Lecture Notes in Computer Science, vol. 3084, Springer-Verlag, Berlin,
Heidelberg, 2004, pp. 42–45.

[5] Fabio Barbon, Paolo Traverso, Marco Pistore, Michele Trainotti, Run-time monitoring of instances and classes of Web service compositions, in:
Proceedings of the 4th IEEE International Conference on Web Services (ICWS’06), IEEE Computer Society, Washington, DC, USA, 2006, pp. 63–71.

[6] Maurice Beek, Antonio Bucchiarone, Stefania Gnesi, A survey on service composition approaches: from industrial standards to formal methods, in:
Proceedings of the 2nd International Conference on Internet and Web Applications and Services (ICIW ’07), IEEE Computer Society, Washington, DC,
USA, 2007, pp. 15–20.

[7] Boualem Benatallah, Marlon Dumas, Quan Z. Sheng, Facilitating the rapid development and scalable orchestration of composite Web services, Distrib.
Parallel Dat. 17 (1) (2005) 5–37.

[8] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, Fabio Patrizi, Automatic service composition via simulation, Int. J. Found. Comput. Sci. 19 (2)
(2008) 429–451.

[9] Daniela Berardi, Giuseppe De Giacomo, Diego Calvanese, Automatic composition of process-based Web services: a challenge, in: Proceedings of the
WWW 2005 Workshop on Web Service Semantics: Towards Dynamic Business Integration (WSS 2005), ACM Press, New York, NY, USA, 2005.

[10] Daniela Berardi, Giuseppe De Giacomo, Massimo Mecella, Basis for automatic service composition, in: Tutorial at the 14th International World Wide
Web Conference (WWW’05), May 2005.

[11] Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic Web, Scientific American, May 2001, pp. 29–37.
[12] Athman Bouguettaya, Quan Z. Sheng, Florian Daniel (Eds.), Advanced Web Services, Springer, 2013.
[13] Athman Bouguettaya, Quan Z. Sheng, Florian Daniel (Eds.), Web Services Foundations, Springer, 2013.
[14] S. Bourne, C. Szabo, Q.Z. Sheng, Ensuring well-formed conversations between control and operational behaviors of Web services, in: Proceedings of the

10th International Conference on Service-Oriented Computing (ICSOC 2012), Springer-Verlag, Berlin, Heidelberg, 2012, pp. 507–515.
[15] J. Bronsted, K.M. Hansen, M. Ingstrup, Service composition issues in pervasive computing, IEEE Pervasive Comput. 9 (1) (2010) 62–70.
[16] Fabio Casati, Ming-Chien Shan, Dynamic and adaptive composition of e-services, Inform. Syst. 26 (3) (2001) 143–162.
[17] Anis Charfi, Tom Dinkelaker, Mira Mezini, A plug-in architecture for self-adaptive Web service compositions, in: Proceedings of the 7th IEEE

International Conference on Web Services (ICWS’09), IEEE Computer Society, Washington, DC, USA, 2009, pp. 35–42.
[18] Anis Charfi, Mira Mezini, AO4BPEL: an aspect-oriented extension to BPEL, World Wide Web 10 (3) (2007) 309–344.
25 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.
26 http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html.
27 http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-Federation-V1-1B.pdf?S_TACT=105AGX04&S_CMP=LP.

http://refhub.elsevier.com/S0020-0255(14)00542-8/h0085
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0085
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0090
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0090
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0095
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0095
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0095
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0095
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0100
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0100
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0100
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0105
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0105
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0105
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0105
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0110
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0110
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0115
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0115
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0120
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0120
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0120
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0125
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0125
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0125
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0125
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0130
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0130
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0130
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0130
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0135
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0135
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0135
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0140
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0145
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0150
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0150
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0150
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0155
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-Federation-V1-1B.pdf?S_TACT=105AGX04&S_CMP=LP

Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238 237
[19] Massimiliano Colombo, Elisabetta Di Nitto, Marco Mauri, SCENE: a service composition execution environment supporting dynamic changes
disciplined through rules, in: Proceedings of the 4th International Conference on Service-Oriented Computing (ICSOC’06), Lecture Notes in Computer
Science, vol. 4294, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 191–202.

[20] Florian Daniel, Fabio Casati, Boualem Benatallah, Ming-Chien Shan, Hosted universal composition: models, languages and infrastructure in MashArt,
in: Proceedings of the 28th International Conference on Conceptual Modeling (ER’09), Lecture Notes in Computer Science, vol. 5829, Springer-Verlag,
Berlin, Heidelberg, 2009, pp. 428–443.

[21] Qiang Duan, Yuhong Yan, Athanasios V. Vasilakos, A survey on service-oriented network virtualization toward convergence of networking and cloud
computing, IEEE Trans. Network Serv. Manage. 9 (4) (2012) 373–392.

[22] Schahram Dustdar, Wolfgang Schreiner, A survey on Web services composition, Int. J. Web Grid Serv. 1 (1) (2005) 1–30.
[23] D. Fensel, C. Bussler, The Web service modeling framework WSMF, Electron. Comm. Res. Appl. 1 (2) (2002) 113–137.
[24] Roy Thomas Fielding, Architectural styles and the design of network-based software architectures, PhD thesis, 2000.
[25] X. Fu, T. Bultan, J. Su, Synchronizability of conversations among Web services, IEEE Trans. Software Eng. 31 (12) (2005) 1042–1055.
[26] Keita Fujii, Tatsuya Suda, Semantics-based context-aware dynamic service composition, ACM Trans. Auton. Adapt. Syst. 4 (2) (2009) 12:1–12:31.
[27] D. Guinard, V. Trifa, Towards the Web of things: Web mashups for embedded devices, in: Workshop on Mashups, Enterprise Mashups and Lightweight

Composition on the Web (MEM 2009), in Conjunction with WWW’09, Madrid, Spain, April 2009.
[28] Joyce El Haddad, Maude Manouvrier, Marta Rukoz, TQoS: transactional and QoS-aware selection algorithm for automatic Web service composition,

IEEE Trans. Serv. Comput. 3 (1) (2010) 73–85.
[29] Swaroop Kalasapur, Mohan Kumar, Behrooz A. Shirazi, Dynamic service composition in pervasive computing, IEEE Trans. Parallel Distr. Syst. 18 (7)

(2007) 907–918.
[30] Markus Keidl, Alfons Kemper, Towards context-aware adaptable Web services, in: Proceedings of the 13th International World Wide Web Conference

(WWW’04), ACM Press, New York, NY, USA, 2004, pp. 55–65.
[31] Ravi Khadka, Brahmananda Sapkota, An evaluation of dynamic Web service composition approaches, in: Proceedings of the 4th International

Workshop on Architectures, Concepts and Technologies for Service Oriented Computing (ACT4SOC 2010), SciTePress, Athens, Greece, 2010, pp. 67–79.
[32] Srividya Kona, Ajay Bansal, Luke Simon, Ajay Mallya, Gopal Gupta, Thomas D. Hite, USDL: a service-semantics description language for automatic

service discovery and composition, Int. J. Web Serv. Res. 6 (1) (2009) 20–48.
[33] W. Kongdenfha, H.R. Motahari-Nezhad, B. Benatallah, F. Casati, R. Saint-Paul, Mismatch patterns and adaptation aspects: a foundation for rapid

development of Web service adapters, IEEE Trans. Serv. Comput. 2 (2) (2009) 94–107.
[34] Jacek Kopecký, Karthik Gomadam, Tomas Vitvar, hRESTS: an HTML microformat for describing RESTful Web services, in: Proceedings of the 2008 IEEE/

WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT’08), IEEE Computer Society, Washington, DC, USA,
2008, pp. 619–625.

[35] Amaia Lazcano, Gustavo Alonso, Heiko Schuldt, C. Schuler, The WISE approach to electronic commerce, J. Comput. Syst. Sci. Eng. 15 (5) (2000) 345–364.
[36] F. Lécué, Y. Gorronogoitia, R. Gonzalez, M. Radzimski, M. Villa, SOA4All: an innovative integrated approach to services composition, in: Proceedings of

the 8th IEEE International Conference on Web Services (ICWS’10), IEEE Computer Society, Washington, DC, USA, 2010, pp. 58–67.
[37] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, Richard B. Scherl, GOLOG: a logic programming language for dynamic domains, J.

Logic Program. 31 (1997) 59–83.
[38] Xitong Li, Yushun Fan, Stuart Madnick, Quan Z. Sheng, A pattern-based approach to protocol mediation for Web services composition, Inform. Software

Technol. 52 (3) (2010) 304–323.
[39] Xitong Li, Yushun Fan, Quan Z. Sheng, Zakaria Maamar, Hongwei Zhu, A petri-net approach to analyzing behavioral compatibility and similarity of Web

services, IEEE Trans. Syst. Man Cybernet. Syst. 41 (3) (2011) 510–521.
[40] Benchaphon Limthanmaphon, Yanchun Zhang, Web service composition transaction management, in: Proceedings of the 15th Australasian database

conference (ADC’04), Australian Computer Society, Inc., Darlinghurst, Australia, 2004, pp. 171–179.
[41] M. Schmidt, M. Klusch, A. Gerber, Semantic Web service composition planning with OWLS-XPlan, in: Proceedings of the AAAI Fall Symposium on

Agents and the Semantic Web, AAAI Press, 2005, pp. 55–62.
[42] Sujith S. Matthew, Yacine Atif, Quan Z. Sheng, Zakaria Maamar, The Web of things: challenges and enabling technologies, in: Nik Bessis, Fatos Xhafa,

Dora Vaarvaigou, Richard Hill, Maozhen Li (Eds.), Internet of Things and Inter-Cooperative Computational Technologies for Collective Intelligence,
Springer Verlag, 2013.

[43] Andrea Maurino, Enrico Mussi, Stefano Modafferi, Barbara Pernici, The MAIS framework for composite Web services, Int. J. Interoperab. Bus. Inform.
Syst. 6 (2007) 32–64.

[44] D.V. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, D. Wilkins, PDDL – The Planning Domain Definition Language, Technical
Report TR-98-003, Yale Center for Computational Vision and Control, 1998.

[45] Drew V. McDermott, Estimated-regression planning for interactions with Web services, in: Proceedings of the 6th International Conference on
Artificial Intelligence Planning Systems (AIPS 2002), AAAI Press, 2002.

[46] Sheila Mcilraith, Adapting golog for composition of semantic Web services, in: Proceedings of the 8th International Conference on Knowledge
Representation and Reasoning (KR’02), Morgan Kaufmann, 2002, pp. 482–493.

[47] Brahim Medjahed, Athman Bouguettaya, A multilevel composability model for semantic Web services, IEEE Trans. Knowl. Data Eng. 17 (7) (2005) 954–
968.

[48] Brahim Medjahed, Athman Bouguettaya, Ahmed K. Elmagarmid, Composing Web services on the semantic Web, VLDB J. 12 (4) (2003) 333–351.
[49] Nikolay Mehandjiev, Freddy Lécué, Martin Carpenter, Fethi A. Rabhi, Cooperative service composition, in: Proceedings of the 24th International

Conference on Advanced Information Systems Engineering (CAiSE 2012), Springer-Verlag, Berlin, Heidelberg, 2012, pp. 111–126.
[50] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, Schahram Dustdar, End-to-end support for QoS-aware service selection, binding, and mediation

in VRESCo, IEEE Trans. Serv. Comput. 3 (3) (2010) 193–205.
[51] Nikola Milanovic, Miroslaw Malek, Current solutions for Web service composition, IEEE Int. Comput. 8 (6) (2004) 51–59.
[52] John A. Miller, Devanand Palaniswami, Amit P. Sheth, Krys J. Kochut, Harvinder Singh, WebWork: METEOR’s Web-based workflow management

system, J. Intell. Inform. Manage. Syst. 10 (2) (1998) 185–215.
[53] Oliver Moser, Florian Rosenberg, Schahram Dustdar, Non-intrusive monitoring and service adaptation for WS-BPEL, in: Proceedings of the 17th

International Conference on World Wide Web (WWW’08), ACM Press, New York, NY, USA, 2008, pp. 815–824.
[54] Hamid Reza Motahari Nezhad, Guang Yuan Xu, Boualem Benatallah, Protocol-aware matching of Web service interfaces for adapter development, in:

Proceedings of the 19th International World Wide Web Conference (WWW 2010), Raleigh, North Carolina, USA, 2010.
[55] Srini Narayanan, Sheila A. McIlraith, Simulation, verification and automated composition of Web services, in: Proceedings of the 11th International

Conference on World Wide Web (WWW’02), ACM Press, New York, NY, USA, 2002, pp. 77–88.
[56] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, Fusun Yaman, SHOP2: an HTN planning system, J. Artif. Intell. Res. 20

(1) (2003) 379–404.
[57] Anne H.H. Ngu, Michael P. Carlson, Quan Z. Sheng, Hye-young Paik, Semantic-based mashup of composite applications, IEEE Trans. Serv. Comput. 3 (1)

(2010) 2–15.
[58] Talal H. Noor, Quan Z. Sheng, Sherali Zeadally, Jian Yu, Trust management of services in cloud environments: obstacles and solutions, ACM Computing

Surveys (CSUR), 46 (1) (2013) 12.
[59] Bart Orriëns, Jian Yang, Mike P. Papazoglou, A rule driven approach for developing adaptive service oriented business collaboration, in: Proceedings of

the 3rd International Conference on Service-Oriented Computing (ICSOC’05), Amsterdam, The Netherlands, December 2005, pp. 61–72.
[60] Mike P. Papazoglou, Willem-Jan Heuvel, Service oriented architectures: approaches, technologies and research issues, VLDB J. 16 (3) (2007) 389–415.

http://refhub.elsevier.com/S0020-0255(14)00542-8/h0160
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0160
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0160
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0160
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0165
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0165
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0165
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0165
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0170
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0170
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0175
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0180
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0185
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0190
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0195
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0195
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0200
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0200
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0205
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0205
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0205
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0210
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0210
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0210
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0215
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0215
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0220
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0220
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0225
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0225
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0225
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0225
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0230
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0235
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0235
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0235
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0240
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0240
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0245
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0245
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0250
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0250
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0255
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0255
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0255
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0260
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0260
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0260
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0265
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0265
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0265
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0265
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0265
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0265
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0265
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0265
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0270
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0270
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0275
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0275
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0275
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0280
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0280
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0280
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0285
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0285
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0290
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0295
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0295
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0295
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0300
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0300
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0305
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0310
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0310
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0315
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0315
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0315
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0320
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0320
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0320
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0325
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0325
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0330
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0330
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0335

238 Q.Z. Sheng et al. / Information Sciences 280 (2014) 218–238
[61] Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Leymann, Service-oriented computing: a research roadmap, Int. J. Coop. Inform. Syst. 17
(2) (2008) 223–255.

[62] C. Pautasso, O. Zimmermann, F. Leymann, Restful Web services vs. ‘‘Big’’ Web services: making the right architectural decision, in: Proceedings of the
17th International World Wide Web Conference (WWW 2008), Beijing, China, 2008.

[63] C. Peltz, Web services orchestration and choreography, Computer 36 (10) (2003) 46–52.
[64] Pierluigi Plebani, Cinzia Cappiello, Marco Comuzzi, Barbara Pernici, Sandeep Yadav, MicroMAIS: executing and orchestrating Web services on

constrained mobile devices, Software – Pract. Exp. 42 (9) (2012) 1075–1094.
[65] Shankar R. Ponnekanti, Armando Fox, SWORD: a developer toolkit for Web service composition, in: Proceedings of the 11th International World Wide

Web Conference (WWW’02), May 2002, pp. 83–107.
[66] M.R. Rahimi, N. Venkatasubramanian, S. Mehrotra, A.V. Vasilakos, MAPCloud: mobile applications on an elastic and scalable 2-tier cloud architecture,

in: IEEE Fifth International Conference on Utility and Cloud Computing (UCC 2012), 2012, pp. 83–90.
[67] Jinghai Rao, Xiaomeng Su, A survey of automated Web service composition methods, in: Proceedings of the 1st International Workshop on Semantic

Web Services and Web Process Composition (SWSWPC 2004), Springer-Verlag, Berlin, Heidelberg, 2004, pp. 43–54.
[68] Anders Ravn, Jiri Srba, Saleem Vighio, A formal analysis of the Web services atomic transaction protocol with UPPAAL, in: Proceedings of the 4th

International Conference on Leveraging Applications of Formal Methods, Verification, and Validation, 2010, pp. 579–593.
[69] Fumiko Satoh, Takehiro Tokuda, Security policy composition for composite Web services, IEEE Trans. Serv. Comput. 4 (4) (2011) 314–327.
[70] Q.Z. Sheng, Z. Maamar, H. Yahyaoui, J. Bentahar, K. Boukadi, Separating operational and control behaviors: a new approach to Web services modeling,

IEEE Int. Comput. 14 (3) (2010) 68–76.
[71] Quan Z. Sheng, Composite Web Services Provisioning in Dynamic Environments, PhD thesis, The University of New South Wales, Sydney, NSW,

Australia, 2006.
[72] Quan Z. Sheng, Boualem Benatallah, Marlon Dumas, Eileen Mak, SELF-SERV: a platform for rapid composition of Web services in a peer-to-peer

environment, in: Proceedings of the 28th International Conference on Very Large Databases (VLDB’02), Morgan Kaufmann, 2002, pp. 1051–1054.
[73] Quan Z. Sheng, Boualem Benatallah, Zakaria Maamar, Marlon Dumas, Anne H.H. Ngu, Enabling personalized composition and adaptive provisioning of

Web services, in: Proceedings of the 16th International Conference on Advanced Information Systems Engineering (CAiSE’04), Lecture Notes in
Computer Science, vol. 3084, Springer-Verlag, Berlin, Heidelberg, 2004, pp. 322–337.

[74] Quan Z. Sheng, Boualem Benatallah, Zakaria Maamar, Anne H.H. Ngu, Configurable composition and adaptive provisioning of Web services, IEEE Trans.
Serv. Comput. 2 (1) (2009) 34–49.

[75] Quan Z. Sheng, Zakaria Maamar, Lina Yao, Claudia Szabo, Scott Bourne, Behavior modeling and automated verification of Web services, Inform. Sci. 258
(2014) 416–433.

[76] Quan Z. Sheng, Jian Yu, Schahram Dustdar (Eds.), Enabling Context-Aware Web Services: Methods, Architectures, and Technologies, CRC Press, 2010.
[77] Amit P. Sheth, Karthik Gomadam, Jon Lathem, SA-REST: semantically interoperable and easier-to-use services and mashups, IEEE Int. Comput. 11 (6)

(2007) 91–94.
[78] Amit P. Sheth, Karthik Gomadam, Ajith Ranabahu, Semantics enhanced services: METEOR-S, SAWSDL and SA-REST, IEEE Data Eng. Bull. 31 (3) (2008)

8–12.
[79] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, Dana Nau, HTN planning for Web service composition using SHOP2, Web Seman.: Sci. Serv. Agents

World Wide Web 1 (4) (2004) 377–396.
[80] David Skogan, Roy Gronmo, Ida Solheim, Web service composition in UML, in: Proceedings of the 8th International IEEE Enterprise Distributed Object

Computing Conference (EDOC’04), IEEE Computer Society, Washington, DC, USA, 2004, pp. 47–57.
[81] Halvard Skogsrud, Boualem Benatallah, Fabio Casati, Model-driven trust negotiation for Web services, IEEE Int. Comput. 7 (6) (2003) 45–52.
[82] Shirin Sohrabi, Nataliya Prokoshyna, Sheila A. Mcilraith, Web service composition via the customization of Golog programs with user preferences, in:

Conceptual Modeling: Foundations and Applications, Lecture Notes in Computer Science, vol. 5600, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 319–
334.

[83] Biplav Srivastava, Jana Koehler, Web service composition – current solutions and open problems, in: Proceedings of the ICAPS 2003 Workshop on
Planning for Web Services, AAAI Press, 2003, pp. 28–35.

[84] Michele Trainotti, Marco Pistore, Gaetano Calabrese, Gabriele Zacco, Gigi Lucchese, Fabio Barbon, Piergiorgio Bertoli, Paolo Traverso, ASTRO:
supporting composition and execution of Web services, in: Proceedings of the 3rd International Conference on Service-Oriented Computing
(ICSOC’05), Lecture Notes in Computer Science, vol. 3826, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 495–501.

[85] Jeffrey D. Ullman, Jennifer Widom, A First Course in Database Systems, Prentice-Hall, 1997.
[86] Debra VanderMeer, Anindya Datta, Kaushik Dutta, Helen Thomas, Krithi Ramamritham, Shamkant B. Navathe, FUSION: a system allowing dynamic

Web service composition and automatic execution, in: Proceedings of the IEEE International Conference on E-Commerce (CEC’03), IEEE Computer
Society, Washington, DC, USA, 2003, pp. 399–404.

[87] Yao Wang, Julita Vassileva, A review on trust and reputation for Web service selection, in: Proceedings of ICDCS 2007 Workshop on Distributed
Computing Systems, IEEE Computer Society, Washington, DC, USA, 2007, pp. 25–32.

[88] Ingo Weber, Hye-Young Paik, Boualem Benatallah, Form-based Web service composition for domain experts, ACM Trans. Web 8 (1) (2013) 1–40.
[89] Jian Yu, Jun Han, Quan Z. Sheng, Steven O. Gunarso, PerCAS: an approach to enabling dynamic and personalized adaptation for context-aware services,

in: Proceedings of the 10th International Conference on Service-Oriented Computing (ICSOC 2012), Springer-Verlag, Berlin, Heidelberg, 2012, pp. 173–
190.

[90] Qi Yu, Xumin Liu, Athman Bouguettaya, Brahim Medjahed, Deploying and managing Web services: issues, solutions, and directions, VLDB J. 17 (3)
(2008) 537–572.

[91] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, Quan Z. Sheng, Quality driven Web services composition, in: Proc. of the 12th
International World Wide Web Conference (WWW’03), Budapest, Hungary, May 2003.

[92] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant Kalagnanam, Henry Chang, QoS-aware middleware for Web service
composition, IEEE Trans. Software Eng. 30 (5) (2004) 311–327.

[93] Haibo Zhao, Prashant Doshi, Towards automated restful Web service composition, in: Proceedings of the 7th IEEE International Conference on Web
Services (ICWS’09), IEEE Computer Society, Washington, DC, USA, 2009, pp. 189–196.

[94] Zibin Zheng, Michael R. Lyu, Personalized reliability prediction of Web services, ACM Trans. Software Eng. Methodol. 22 (2) (2013) 12.

http://refhub.elsevier.com/S0020-0255(14)00542-8/h0340
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0340
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0345
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0350
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0350
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0355
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0355
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0355
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0360
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0365
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0365
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0370
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0370
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0370
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0375
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0375
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0375
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0375
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0380
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0380
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0475
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0475
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0385
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0385
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0385
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0385
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0385
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0390
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0390
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0395
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0395
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0400
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0400
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0405
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0405
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0405
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0410
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0415
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0415
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0415
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0415
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0420
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0420
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0420
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0425
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0425
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0425
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0425
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0430
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0430
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0435
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0435
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0435
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0435
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0440
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0440
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0440
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0445
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0450
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0450
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0450
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0450
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0455
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0455
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0460
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0460
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0465
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0465
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0465
http://refhub.elsevier.com/S0020-0255(14)00542-8/h0470

	Web services composition: A decade’s overview
	1 Introduction
	2 Overview of Web services composition
	2.1 Web services
	2.1.1 SOAP-based vs. RESTful Web services
	2.1.2 Atomic vs. composite Web services

	2.2 Web services composition
	2.2.1 Orchestration vs. choreography
	2.2.2 Static vs. dynamic composition
	2.2.3 Manual, semi-automated, and automated composition

	3 Requirements on Web services composition
	3.1 The life cycle of Web services composition
	3.2 Requirements
	3.2.1 Definition phase
	3.2.2 Service selection phase
	3.2.3 Execution phase
	3.2.4 Overall requirements

	4 Standardization efforts
	4.1 Overview of services composition standards
	4.2 Comparison of Web services composition standards

	5 Research prototypes
	5.1 Overview of major research prototypes
	5.1.1 Semi-automated services composition
	5.1.2 Automated composition

	5.2 Research prototype comparison

	6 Services composition platforms
	6.1 Features of services composition platforms
	6.2 Comparison of services composition platforms

	7 Open issues
	8 Conclusion
	Acknowledgments
	References

